PubAg

Main content area

Correlating soil and urban planning for sustainable water cycle

Author:
Sharma, Sheetal
Source:
Journal of water and land development 2019 v.40 no.1 pp. 137-148
ISSN:
2083-4535
Subject:
behavior change, equations, fluid mechanics, groundwater, hydrologic cycle, hydrologic models, land cover, roughness, runoff, soil, urban planning, urbanization, watersheds, wells
Abstract:
Hydrological modelling and processes using modern hydrological models like SCS Curve Number, HCS, HSPF (Hydrologic Simulation Package-Fortran) and kinematic wave models are widely used nowadays in various researches. But using these modelling in drawing the attention of urban planners for challenges and multiple interactions in heterogeneous urban catchments and water systems is still a shortcoming in water sensitive, planning principle. The art of urban planning and technical implementation using behavioural changes in water responses to urban catchments is the need of present urban planning. The complexities of effects and behavioural changes in the water system or urban catchments and incomplete knowledge of these interactions result in failures of sustainable urban developments. Urban planning needs water sensitive methodology to synchronize soil, water and land cover operational with the population over it. The paper reviews the water sensitive urban planning considering the role of soil in urban planning for water and lands correlations, with the purpose of identifying current limitations and opportunities for future urban planning. Data availability and simplified methods are still a strong limitation for urban planners. Therefore, urban hydrology is often simplified either as a study of surface runoff over impervious surfaces or hydraulics of piped systems. Hence the paper provides approach and universal solution to forecast the behaviour of urban catchment for urbanization in terms of natural land-water cycles and its application in planning existing or new urban catchments. The methodology consists of observing Urban watershed catchment areas with different soil groups and built-up induction over them. A detailed study of water levels in hydrological wells and runoff pattern for the period of 40 years have provided a linear correlation of soil, roughness, land cover, infiltration, ground water and built upon the basis of soil behaviours. These correlations conclude to make regression equations as the blueprint for future urban planning norms to be followed by the planners, engineers, and hydrologists for planning.
Agid:
6316908