PubAg

Main content area

Influence of Nitrogen Levels on Nutrient Transporters and Regulators of Protein Synthesis in Small Intestinal Enterocytes of Piglets

Author:
Tian, Zhimei, Ma, Xianyong, Deng, Dun, Cui, Yiyan, Chen, Weidong
Source:
Journal of agricultural and food chemistry 2019 v.67 no.10 pp. 2782-2793
ISSN:
1520-5118
Subject:
coculture, crude protein, culture media, diet, enterocytes, essential amino acids, gastric mucosa, human cell lines, jejunum, nitrogen, nutrient uptake, phosphatidylinositol 3-kinase, piglets, protein synthesis, transporters
Abstract:
To investigate effects of dietary nitrogen level on nutrient absorption and utilization in small intestinal enterocyte of piglets, weaned piglets were fed for 10 days with diets containing 20%, 17%, or 14% crude protein (CP) with supplementation to meet requirements for essential amino acids in vivo, and IPEC-1 cells were cultured with different nitrogen levels (NL) in a culture medium (70%, 85%, and 100%) in vitro by monocultured and cocultured intestinal porcine epithelial cells (IPEC-1) and human gastric epithelial cells (GES-1). The results showed the following: (1) In animal trial, decreased dietary CP reduced transcript abundance of nutrient transporters like CAT1, PepT1, GLUT2, and SGLT-1 in jejunal mucosa (0.09 ± 0.03, P < 0.0001; 0.40 ± 0.04, P = 0.0087; 0.20 ± 0.07, P = 0.0003; 0.35 ± 0.02, P = 0.0001), but 17% CP diet did not affect jejunal protein synthesis. (2) The transcript abundance of nutrient transporters displayed similarly effective tendency in jejunal mucosa and cocultured IPEC-1 rather than that in monocultured IPEC-1. (3) Decreased nitrogen levels reduced expressive abundance of PI3K, Class 3 PI3K, TSC2, and 4E-BP1 in monocultured IPEC-1, but 85% nitrogen level did not affect expressive abundance of PI3K, TSC2, mTORC1, 4E-BP1, and S6K1 in cocultured IPEC-1. In general, decreased 3% CP or 15% nitrogen level reduced relative transcript expression of nutrient transporters, but did not affect protein synthesis in jejunal mucosa and cocultured IPEC-1. Therefore, decreased 3% dietary CP increased utilized and synthetic efficiency of nitrogen resource in small intestine and was beneficial in saving the dietary nitrogen resource.
Agid:
6322982