PubAg

Main content area

Overexpressed Hsp70 alleviated formaldehyde‐induced apoptosis partly via PI3K/Akt signaling pathway in human bronchial epithelial cells

Author:
Liu, Lulu, Huang, Yun, Feng, Xiangling, Chen, Jihua, Duan, Yanying
Source:
Environmental toxicology 2019 v.34 no.4 pp. 495-504
ISSN:
1520-4081
Subject:
Western blotting, apoptosis, asthma, epithelial cells, flow cytometry, formaldehyde, heat-shock protein 70, humans, lungs, pathogenesis, phosphatidylinositol 3-kinase, pneumonia, pollutants, signal transduction
Abstract:
Formaldehyde (FA) is a ubiquitous environmental pollutant, which can induce apoptosis in lung cell and is related to the pathogenesis of asthma, pneumonia, and chronic obstructive pulmonary disease. Heat shock protein 70 (Hsp70) is an ATP‐dependent molecular chaperone and exhibits an anti‐apoptosis ability in a variety of cells. Previous studies reported that the expression of Hsp70 was induced when organisms were exposed to FA. Whether Hsp70 plays a role in the FA‐induced apoptosis and the involved cell signaling pathway remain largely unknown. In this study, human bronchial epithelial cells with overexpressed Hsp70 and the control were exposed to different concentrations of FA (0, 40, 80, and 160 μmol/L) for 24 hours. Apoptosis and the expression levels of PI3K, Akt, p‐Akt, MEK, p‐MEK, and GLI2 were detected by Annexin‐APC/7AAD double‐labeled flow cytometry and western blot. The results showed that overexpression of Hsp70 decreased the apoptosis induced by FA and alleviated the decline of PI3k and p‐Akt significantly. Inhibitor (LY 294002, a specific inhibitor of PI3K‐Akt) test result indicated that PI3K‐Akt signaling pathway was involved in the inhibition of FA‐induced apoptosis by Hsp70 overexpression and also active in the maintenance of GLI2 level. However, it also suggested that other signaling pathways activated by overexpressed Hsp70 participated in this process, which was needed to be elucidated in further research.
Agid:
6324435