Main content area

Effect Analysis of Operation Stage Difference on Energy Storage Operation Chart of Cascade Reservoirs

Jiang, Zhiqiang, Qin, Hui, Ji, Changming, Hu, Dechao, Zhou, Jianzhong
Water resources management 2019 v.33 no.4 pp. 1349-1365
dry season, energy, hydrology, power generation, rivers, statistical analysis, water power, wet season
In the research and application of reservoir operation chart, few studies have paid attention to the time scale problem of operation stage, and there are almost no conclusions about the relationship between power generation and operation stage length. In view of this, the drawing method of Energy Storage Operation Chart (ESOC) and its simulation operation processes are studied in this paper. Cascade hydropower station of Yalong River is taken as research object, and its ESOCs under different time scales (5d, 10d, 15d, 20d, 30d and 60d) are derived. Through simulation calculation and statistical analysis, a different conclusion with the deterministic optimization of reservoir operation is drawn. That is, the larger the time scale of operation stage is, the greater the power generation will be. Adjacent growth of 5d, 10d, 15d, 20d, 30d and 60d is 0.77%, 1.61%, 0.49%, 0.73% and 3.49%, respectively. To analyze the cause of this scale effect, this paper divided the operation of a hydrological year into two periods (i.e., wet season and dry season), and derived the water level variation of each period under different time scales respectively. Reason for this scale effect is explained by this derived water level variation, and further verified through the phased statistical data. Furthermore, through simulation calculation of Jinxi hydropower station on shorter time scale, the best time scale in making med- and long-term plans in actual production operation is concluded, which has important guiding significance for actual reservoir operation.