Main content area

Modeling the active dispersal of juvenile leatherback turtles in the North Atlantic Ocean

Lalire, Maxime, Gaspar, Philippe
Movement ecology 2019 v.7 no.1 pp. 7
Dermochelys coriacea, adults, beaches, bycatch, coasts, habitats, juveniles, latitude, models, nesting, turtles, Bay of Biscay, French Guiana, Mauritania, Mediterranean Sea, Mediterranean region, Northern Africa, Northwest Atlantic, Portugal, Suriname
BACKGROUND: The Northwest Atlantic (NWA) leatherback turtle (Dermochelys coriacea) subpopulation is one of the last healthy ones on Earth. Its conservation is thus of major importance for the conservation of the species itself. While adults are relatively well monitored, pelagic juveniles remain largely unobserved. In an attempt to reduce this knowledge gap, this paper presents the first detailed simulation of the open ocean dispersal of juveniles born on the main nesting beaches of French Guiana and Suriname (FGS). METHODS: Dispersal is simulated using STAMM, an Individual Based Model in which juveniles actively disperse under the combined effects of oceanic currents and habitat-driven movements. For comparison purposes, passive dispersal under the sole effect of oceanic currents is also simulated. RESULTS: Simulation results show that oceanic currents lead juveniles to cross the Atlantic at mid-latitudes. Unlike passive individuals, active juveniles undertake important north-south seasonal migrations while crossing the North Atlantic. They finally reach the European or North African coast and enter the Mediterranean Sea. Less than 4-year-old active turtles first arrive off Mauritania. Other productive areas on the eastern side of the Atlantic (the coast of Galicia and Portugal, the Gulf of Cadiz, the Bay of Biscay) and in the Mediterranean Sea are first reached by 6 to 9-year-old individuals. This active dispersal scheme, and its timing, appear to be consistent with all available stranding and bycatch data gathered on the Atlantic and Mediterranean coasts of Europe and North Africa. Simulation results also suggest that the timing of the dispersal and the quality of the habitats encountered by juveniles can, at least partly, explain why the NWA leatherback subpopulation is doing much better than the West Pacific one. CONCLUSION: This paper provides the first detailed simulation of the spatial and temporal distribution of juvenile leatherback turtles dispersing from their FGS nesting beaches into the North Atlantic Ocean and Mediterranean Sea. Simulation results, corroborated by stranding and bycatch data, pinpoint several important developmental areas on the eastern side of the Atlantic Ocean and in the Mediterranean Sea. These results shall help focus observation and conservation efforts in these critical areas.