PubAg

Main content area

Imaging the Redox States of Live Cells with the Time-Resolved Fluorescence of Genetically Encoded Biosensors

Author:
Li, Lei, Zhang, Changcheng, Wang, Peng, Wang, Aoxue, Zhou, Jiasheng, Chen, Guoqing, Xu, Jianhua, Yang, Yi, Zhao, Yuzheng, Zhang, Sanjun, Tian, Yang
Source:
Analytical chemistry 2019 v.91 no.6 pp. 3869-3876
ISSN:
1520-6882
Subject:
antineoplastic agents, biosensors, fluorescence, fluorescent proteins, image analysis, macrophages, mitochondria, oxidative stress, thiols, vertebrates, wavelengths
Abstract:
Redox environments in cells influence many important physiological and pathological processes. In this study, the time-resolved fluorescence of a recently reported thiol redox-sensitive sensor based on vertebrate fluorescent protein UnaG, roUnaG, was studied, along with the application of the time-resolved fluorescence of roUnaG to image the redox states of the mitochondria, cytoplasm, and nucleus in live cells. Time-resolved fluorescence images of roUnaG clearly demonstrated that potent anticancer compound KP372-1 induced extreme oxidative stress. A more stressful redox state observed in activated macrophages further demonstrated the validity of roUnaG with time-resolved fluorescence. For comparison, time-resolved fluorescence images of four other frequently used redox biosensors (roGFP1, HyPer, HyPerRed, and rxRFP) were also captured. The time-resolved fluorescence allows an intrinsically ratiometric measurement for biosensors with one excitation wavelength and provides new opportunities for bioimaging.
Agid:
6331917