Main content area

In suit inducing electron-donating and electron-withdrawing groups in carbon nitride by one-step NH4Cl-assisted route: A strategy for high solar hydrogen production efficiency

Huang, Zhaohui, Chen, Hui, Zhao, Lei, Fang, Wei, He, Xuan, Li, Weixin, Tian, Pan
Environment international 2019 v.126 pp. 289-297
absorption, active sites, ammonium chloride, carbon nitride, hydrogen production, melamine, photocatalysis, polymers, porosity, semiconductors, surface area
Owing to insufficient active sites, strongly bound excitons and insufficient optical absorption, polymer semiconductors have only shown mild activity as potential candidates for photocatalysis. A g-C₃N₄ with improved optical absorption capacity, charge transfer performance and porosity was successfully prepared by a one-step NH₄Cl-assisted route. Interaction of melamine with NH₄Cl preparation of Porous g-C₃N₄(CN-xy) with active functional groups modified pore wall shown to result in highly crystalline species with a maximum π-π layer stacking distance of heptazine units of 0.321 nm, decreases the optical band gap from 2.80 to 2.13 eV and maximum surface area reached 56.485 m² g⁻¹. The balanced improvement of the multiple defects of g-C₃N₄ makes the photocatalytic degradation of RhB and the photocatalytic hydrogen production efficiency 4 and 5 times higher than the pristine g-C₃N₄, respectively.