PubAg

Main content area

Effect of biochars pyrolyzed in N2 and CO2, and feedstock on microbial community in metal(loid)s contaminated soils

Author:
Igalavithana, Avanthi Deshani, Kim, Kyoung-Ho, Jung, Jong-Min, Heo, Hye-Sook, Kwon, Eilhann E., Tack, Filip M.G., Tsang, Daniel C.W., Jeon, Young Jae, Ok, Yong Sik
Source:
Environment international 2019 v.126 pp. 791-801
ISSN:
0160-4120
Subject:
arsenic, bacterial communities, biochar, cadmium, carbon, carbon dioxide, community structure, feedstocks, genes, lead, neutralization, pH, polluted soils, ribosomal RNA, soil amendments, soil bacteria, surface area, zinc
Abstract:
Little is known about the effects of applying amendments on soil for immobilizing metal(loid)s on the soil microbial community. Alterations in the microbial community were examined after incubation of treated contaminated soils. One soil was contaminated with Pb and As, a second soil with Cd and Zn. Red pepper stalk (RPS) and biochars produced from RPS in either N2 atmosphere (RPSN) or CO2 atmosphere (RPSC) were applied at a rate of 2.5% to the two soils and incubated for 30 days. Bacterial communities of control and treated soils were characterized by sequencing 16S rRNA genes using the Illumina MiSeq sequencing. In both soils, bacterial richness increased in the amended soils, though somewhat differently between the treatments. Evenness values decreased significantly, and the final overall diversities were reduced. The neutralization of pH, reduced available concentrations of Pb or Cd, and supplementation of available carbon and surface area could be possible factors affecting the community changes. Biochar amendments caused the soil bacterial communities to become more similar than those in the not amended soils. The bacterial community structures at the phylum and genus levels showed that amendment addition might restore the normal bacterial community of soils, and cause soil bacterial communities in contaminated soils to normalize and stabilize.
Agid:
6333386