PubAg

Main content area

Temperature dependence of mitoflash biogenesis in cardiac mitochondria

Author:
Yu, Peng, Qi, Wenfeng, Huwatibieke, Bahetiyaer, Li, Jinghang, Wang, Xianhua, Cheng, Heping
Source:
Archives of biochemistry and biophysics 2019 v.666 pp. 8-15
ISSN:
0003-9861
Subject:
biogenesis, cardiomyocytes, extrusion, membrane potential, mitochondria, mitochondrial membrane, protons, temperature
Abstract:
Mitochondrial flashes (mitoflashes) represent fundamental biochemical and biophysical dynamics of the organelle, involving sudden depolarization of mitochondrial membrane potential (ΔΨm), bursting production of reactive oxygen species (ROS), and accelerated extrusion of matrix protons. Here we investigated temperature dependence of mitoflash biogenesis as well as ΔΨm oscillations, a subset of which overlapping with mitoflashes, in both cardiac myocytes and isolated respiring cardiac mitochondria. Unexpectedly, we found that mitoflash biogenesis was essentially temperature-independent in intact cardiac myocytes, evidenced by the constancy of frequency as well as amplitude and rise speed over 5 °C–40 °C. Moderate temperature dependence was found in single mitochondria charged by respiratory substrates, where mitoflash frequency was decreased over 5 °C–20 °C with Q10 of 0.74 for Complex I substrates and 0.83 for Complex II substrate. In contrast, ΔΨm oscillation frequency displayed a negative temperature dependence at 5 °C–20 °C with Q10 of 0.82 in intact cells, but a positive temperature dependence at 25 °C - 40 °C with Q10 of 1.62 in isolated mitochondria charged with either Complex I or Complex II substrates. Moreover, the recovery speed of individual mitoflashes exhibited mild temperature dependence (Q10 = 1.14–1.22). These results suggest a temperature compensation of mitoflash frequency at both the mitochondrial and extra-organelle levels, and underscore that mitoflashes and ΔΨm oscillations are related but distinctly different mitochondrial functional dynamics.
Agid:
6334543