U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.


Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


Main content area

Phytate negatively influences wheat dough and bread characteristics by interfering with cross-linking of glutenin molecules

Eun Young Park, E. Patrick Fuerst, Byung-Kee Baik
Journal of cereal science 2016 v.70 pp. 199-206
absorption, baking, baking quality, breads, crosslinking, dough, dough quality, fermentation, functional properties, gluten, glutenins, iron, loaves, mixing, molecular weight, phytic acid, protein content, wheat, whole wheat flour
The influence of added phytate on dough properties and bread baking quality was studied to determine the role of phytate in the impaired functional properties of whole grain wheat flour for baking bread. Phytate addition to refined flour at a 1% level substantially increased mixograph mixing time, generally increased mixograph water absorption, and reduced the SDS-unextractable protein content of dough before and after fermentation as well as the loaf volume of bread. The added phytate also shifted unextractable glutenins toward a lower molecular weight form and increased the iron-chelating activity of dough. It appears that phytate negatively affects gluten development and loaf volume by chelating iron and/or binding glutenins, and consequently interfering with the oxidative cross-linking of glutenin molecules during dough mixing. Phytate could be at least partially responsible for the weak gluten network and decreased loaf volume of whole wheat flour bread as compared to refined flour bread.