PubAg

Main content area

Influence of plant growth promoting rhizobacterial strains Paenibacillus sp. IITISM08, Bacillus sp. PRB77 and Bacillus sp. PRB101 using Helianthus annuus on degradation of endosulfan from contaminated soil

Author:
Rani, Rupa, Kumar, Vipin, Usmani, Zeba, Gupta, Pratishtha, Chandra, Avantika
Source:
Chemosphere 2019 v.225 pp. 479-489
ISSN:
0045-6535
Subject:
Bacillus (bacteria), Helianthus annuus, Paenibacillus, air, biomarkers, biomass production, endosulfan, leaves, lipid peroxidation, malondialdehyde, non-food crops, pesticide application, phytomass, plant growth, plant growth-promoting rhizobacteria, plant tissues, polluted soils, remediation, roots, shoots
Abstract:
Endosulfan is a broad spectrum insecticide used in agriculture for protection of various food and non-food crops. It is persistent in nature and hence found in soil, air and water. The potential use of plants and microorganisms for the removal of endosulfan from soil was studied. Helianthus annuus plant was grown in soil spiked with 5, 10, 25 and 50 mg kg−1 concentrations of endosulfan and inoculated with plant growth promoting rhizobacterial strains Paenibacillus sp. IITISM08, Bacillus sp. PRB77 and Bacillus sp. PRB101 for 40, 80 and 120 days. Potential of plant for endosulfan uptake was evaluated by investigating the endosulfan levels in plant tissues (root and shoot). The results indicated that endosulfan accumulation followed the pattern of root > shoot as well as decrease in uptake of endosulfan in root and shoot of a plant grown in bacterial inoculated soil as compared to un-inoculated soil. Bacterial inoculation had a positive effect on endosulfan degradation. Maximum degradation of 92% at 5 mg kg−1 of endosulfan in soil was observed on inoculation with PRB101 after 120 days of inoculation. The results showed that plant growth promoting bacteria enhances plant biomass production. Lipid peroxidation was also estimated by determining the malondialdehyde (MDA) production, which is a biomarker of oxidative damage. Decrease in MDA formation by root and leaves of plants grown in the bacteria inoculated plant was also observed. The results suggested the effectiveness of plant growth promoting rhizobacteria to boost accumulation potential, biomass production and enhance remediation of endosulfan contaminated soil.
Agid:
6335498