PubAg

Main content area

In vitro toxicity testing in hemocytes of the marine mussel Mytilus galloprovincialis (L.) to uncover mechanisms of action of the water accommodated fraction (WAF) of a naphthenic North Sea crude oil without and with dispersant

Author:
Katsumiti, Alberto, Nicolussi, Greta, Bilbao, Dennis, Prieto, Ailette, Etxebarria, Nestor, Cajaraville, Miren P.
Source:
The Science of the total environment 2019 v.670 pp. 1084-1094
ISSN:
0048-9697
Subject:
Mytilus galloprovincialis, aquatic organisms, cell culture, culture media, cytotoxicity, dispersants, environmental assessment, hemocytes, marine environment, mechanism of action, microfilaments, mussels, oil spills, oils, petroleum, phagocytosis, plasma membrane, remediation, risk assessment, temperature, toxicity testing, viability, North Sea
Abstract:
Dispersants used in oil spills could result toxic to marine organisms and could influence the toxicity of oil compounds. The aim of this work was to uncover the mechanisms of action of the water accommodated fraction (WAF) of a naphthenic North Sea crude oil produced at 10, 15 and 20 °C without and with the dispersant Finasol OSR52 (WAF and WAFD, respectively) using hemocytes of the marine mussel Mytilus galloprovincialis. Primary cultures of hemocytes were exposed in glass-coated microplates to different WAF or WAFD dilutions (0.25, 2.5, 25, 50 and 100%) and to the dispersant alone at the same concentrations present in the WAFD dilutions (1.25, 12.5, 125, 250 and 500 mg/L). Of the two in vitro approaches tested, the second one was selected which involved exposure of hemocytes for 4 h to unfiltered WAF, WAFD and dispersant dilutions without cell culture media. WAF decreased hemocytes viability only at the highest dilution whereas WAFD and the dispersant alone were cytotoxic at the three highest concentrations. Temperature of production of WAF, WAFD and dispersant did not influence their cytotoxicity to hemocytes. WAF increased ROS production and MXR transport activity in hemocytes. Exposure to WAFD and dispersant increased ROS production, provoked plasma membrane and actin cytoskeleton disruption and decreased phagocytic activity. In conclusion, the dispersant tested was toxic to mussel hemocytes and it greatly increased the toxicity of WAFD. The present data could be useful for the environmental risk assessment of oil spills and their remediation strategies in the marine environment.
Agid:
6335712