Main content area

Insights into the uptake, elimination and accumulation of microplastics in mussel

Fernández, Beatriz, Albentosa, Marina
Environmental pollution 2019 v.249 pp. 321-329
digestive system, feces, feeding behavior, food webs, ingestion, marine environment, microalgae, microplastics, mussels, polyethylene, tissues
The majority of plastics present in the marine environment are microplastics (MPs, <5 mm). Suspension filter feeders are susceptible species to MPs ingestion. Once ingested MPs can be eliminated packed in fecal pellets, or they can be accumulated within tissues, and likely be transferred along the food web. The research on MPs is hampered by the difficulty on their quantification and the lack of standardized methodologies. Indeed, limited information exits about the capacity of marine organisms to ingest, accumulate and eliminate MPs. In this work we investigated the uptake, elimination and accumulation of MPs (irregularly shaped particles of high density polyethylene, ≤22 μm) in mussel. Mussels were exposed to two concentrations of MPs (2 and 4 mm3 l−1), and their uptake, elimination and accumulation in digestive gland was investigated. The results showed that the uptake of MPs increased at the high concentration tested, and that mussels cleared MPs at the same extent than a food item (microalgae) of similar size. Small MPs (2–4 μm) were less efficiently cleared than the larger ones. Large MPs (>10 μm) were faster eliminated than the smaller ones. The global balance showed that after 6 days of depuration mussels eliminated ≈85% of the MPs cleared, and that ≈2–6% of the MPs cleared remained in the digestive gland, essentially those <6 μm. We recorded a long retention time for MPs, contrasting with the lower times assumed to be necessary to empty mussel's gut before quantifying MPs. Our study emphasized the gap of knowledge on the feeding behaviour of mussels in relation to MPs, and the necessity to investigate it in different marine species, and under different exposure scenarios.