Main content area

Experimentation and modeling of surface chemistry of the silica-water interface for low salinity waterflooding at elevated temperatures

Duffy, Timothy S., Raman, Balaji, Hall, Derek M., Machesky, Michael L., Johns, Russell T., Lvov, Serguei N.
Colloids and surfaces 2019 v.570 pp. 233-243
carbonates, models, oil fields, oils, pH, prediction, salinity, silica, sodium chloride, temperature, wettability, zeta potential
Models predicting wettability alteration of mineral-brine-oil interfaces during low-salinity-waterflooding (LSW) should account for the elevated temperatures typically found in oil reservoirs. For the first time, high temperature ζ-potential (zeta potential) data for silica are collected and used to interpret surface chemistries and interactions at reservoir-like conditions to predict temperature’s effect on wettability alteration. Mobility data for amorphous silica in varying NaCl(aq) concentrations at 25, 100, and 150 °C and neutral pH were obtained through microelectrophoresis experiments. Calculated ζ-potentials were fit with surface complexation model (SCM) parameters to predict electrical double layer (EDL) parameters based upon the Gouy-Chapman-Stern-Grahame (GCSG) model. ζ-potentials increased with increasing temperature (around 50% increase from 25 to 150 °C) and decreasing NaCl concentrations (10−1–10−4 mol kg−1). These trends, along with Derjaguin-Verwey-Landau-Overbeek (DLVO) theory, suggests that overall repulsive forces extend farther from the surface at low salinity and higher temperatures, implying greater wetting thickness/surface wettability in these environments. The resulting surface concentration calculations suggest that LSW is most impactful up to 10−2 mol kg−1 of salt, and that additional dilution below 10−3 mol kg−1 will negligibly impact oil recovery, particularly at reservoir temperatures above 100 °C. The analysis provides a framework for treating more complex reservoir systems, such as carbonates in multivalent brines.