PubAg

Main content area

Evaluation of air flow through an active green wall biofilter

Author:
Abdo, Peter, Huynh, B. Phuoc, Irga, Peter J., Torpy, Fraser R.
Source:
Urban forestry & urban greening 2019 v.41 pp. 75-84
ISSN:
1618-8667
Subject:
air, air flow, air pollutants, air pollution, air quality, biofilters, biofiltration, irrigation
Abstract:
Green walls show promise as active bio-filters to improve indoor air quality by removing both gaseous and particulate air pollutants. The current work represents a detailed assessment of airflow through an active green wall module. Airflow distribution through the module, the effect of wetting the substrate, and the effect of introducing a cover to the module’s open top face were investigated, with the aim to improve the module’s design and achieve more appropriate and effective airflow. Four cases of both planted and unplanted modules under both dry and wet conditions are considered. This work’s primary observation is that more air will pass through a typical green wall substrate, and hence become cleansed, when the substrate is saturated wet more than when it is dry. The increase was substantial at approximately 50% more with 14.9 ± 0.2 L/s total air flow rate passing through the wet planted module versus 10 ± 0.2 L/s when dry. Reducing the 15.5 ± 0.75% of airflow passing through the module’s open top face was found to be essential to maximize the bio-filtration capacity. Adding a top cover to the module having six 10 mm holes for irrigation decreased the airflow through the top by 6 ± 0.75%, and directed it through the filter increasing the percentage of air flow passing through the front openings from 79 ± 4% to 85 ± 4%.
Agid:
6342508