Main content area

How phosphoinositides shape autophagy in plant cells

Chung, Taijoon
Plant science 2019 v.281 pp. 146-158
autophagy, biogenesis, eukaryotic cells, genes, homeostasis, protein transport, proteins, vacuoles
Plant cells use autophagy to degrade their own cytoplasm in vacuoles, thereby not only recycling their breakdown products, but also ensuring the homeostasis of essential cytoplasmic constituents and organelles. Plants and other eukaryotes have a conserved set of core Autophagy-related (ATG) genes involved in the biogenesis of the autophagosome, the main autophagic compartment destined for the lytic vacuole. In the past decade, the core ATG genes were isolated from several plant species. The core ATG proteins include the components of the VACUOLAR PROTEIN SORTING 34 (VPS34) complex that is responsible for the local production of phosphatidylinositol 3-phosphate (PI3P) at the site of autophagosome formation. Dissecting the roles of PI3P and its effectors in autophagy is challenging, because of the multi-faceted links between autophagosomal and endosomal systems. This review highlights recent studies on putative plant PI3P effectors involved in autophagosome dynamics. Molecular mechanisms underlying the requirement of PI3P for autophagosome biogenesis and trafficking are also discussed.