Main content area

A cell viability assessment method based on area-normalized impedance spectrum (ANIS)

Zhang, Rongbiao, Wei, Mingji, Chen, Shuohuan, Li, Guoxiao, Zhang, Fei, Yang, Ning, Huang, Linkui
Biosensors & bioelectronics 2018 v.110 pp. 193-200
biosensors, cell viability, models
Impedance measurement of cells using electric cell-substrate impedance sensing (ECIS) is widely accepted as an effective method to assess cell status. However, the sensitive frequency drifts over time with the changes of culture condition according to the built circuit model and experimental results. The area-normalized impedance spectrum (ANIS) method, which uses normalized area of impedance spectrum in a certain interval to assess cell viability, was proposed in this paper to solve the problem. The certain interval is calculated due to the threshold Zth, which is determined by 2% decline of the maximum impedance. Stabilities of two methods were analyzed by normalizing the area and impedance, showing that the normalized impedance fluctuated like a wave, while the normalized area was smoother. In addition, Cell Count Kit-8 (CCK-8) assay was carried out proving that the correlation index of ANIS method increases by 2.4% compared with impedance sensing method, and the maximum error of ANIS method decreases by 4%. Comparison analysis of two methods with random measurement noise was also discussed in this paper, and the results showed that the ANIS method was less affected by measurement noise than impedance sensing method. It demonstrated that the ANIS method is a more stable and accurate method to assess cell viability.