Main content area

An Insight to the Cornucopia of Possibilities in Calibration Data Collection

Vonach, Tanja, Kleidorfer, Manfred, Rauch, Wolfgang, Tscheikner-Gratl, Franz
Water resources management 2019 v.33 no.5 pp. 1629-1645
calibration, data collection, drainage systems, hydrologic models, meteorological data, model validation, normal values, planning
The calibration of models for urban drainage systems has become more and more important as especially the usage of detailed models has increased considerably over the last years as the basis for planning and design. Still the effects originating from the choice of data used for model calibration are little known and advice on planning measurement campaigns for model calibration is limited, especially for small and medium-sized municipalities. The choice of measurement sites (number and location) within a sewer system is affecting the robustness of the calibration and in consequence the assessment of the modelled system behaviour. This paper discusses the calibration of a hydrologic-hydrodynamic model using the representative example of a small municipality. Different calibration scenarios were created using a model-based approach, focusing on varying availability of in-sewer measurement data. To assess the performance of different scenarios and validate the respective models, different model outputs were compared. The different calibration scenarios resulted in high variations in the model performances. The number and location of used calibration points influence model performance significantly. Predicted CSO volumes deviate from a set of given reference values in ranges between 1% and 253% for one, −21% to −5% for two and 1% to 237% for five used calibration points, depending on the rainfall data input. Consequently, the design of measurement campaigns for calibration data is a very sensitive decision in the modelling process. The model performance further influences design and decision-making processes, which are then perceptible in economic and functional aspects.