Main content area

α2-Adrenoceptor signaling in cardiomyocytes of spontaneously hypertensive rats starts to impair already at early age

Maltsev, A.V., Evdokimovskii, E.V., Kokoz, Y.M.
Biochemical and biophysical research communications 2019 v.512 no.4 pp. 908-913
Ca2-transporting ATPase, adulthood, agmatine, alpha-2 adrenergic receptors, animal disease models, calcium, cardiomyocytes, cardioprotective effect, catecholamines, hypertension, neurotransmitters, nitric oxide, phenotype, protein content, rats, sarcoplasmic reticulum
α2-Adrenoceptors (α2-AR) found in the cardiomyocyte's sarcolemma represent a very important negative feedback for control of myocardial contractility by endogenous catecholamines. Earlier, we showed that the endogenous neurotransmitter agmatine in micromolar concentrations via α2-AR activates the nitric oxide (NO) synthesis, enhancing the Ca2+ pumping into sarcoplasmic reticulum (SR). In the millimolar doses it inhibits Ca2+ sequestration by SR Ca2+ ATPase (SERCA), acting through the first type of imidazoline receptors. Here, we study the functional activity of agmatine, as well as a specific α2-agonist, guanabenz, in respect to spontaneous Ca2+-transients in SHR cardiomyocytes of the early age (2–2.5 months), and adulthood animals (8–9 months). α2-mediated cardioprotective effect was almost twofold decreased in SHR cardiac cells compared to normotensive rats of the corresponding age, despite the fact that both α2A- and α2B-AR protein levels were significantly increased in SHR cardiomyocytes. NO-mediated facilitation of SERCA activity is substantially reduced in SHR cardiomyocytes vs. normotensive rats. These data suggest that the SHR phenotype starting from early age shows signs of the impaired sarcolemmal α2-AR signaling, which can aggravate the development of this cardiovascular pathology.