PubAg

Main content area

Identification of fishy odor causing compounds produced by Ochromonas sp. and Cryptomonas ovate with gas chromatography-olfactometry and comprehensive two-dimensional gas chromatography

Author:
Guo, Qingyuan, Yu, Jianwei, Zhao, Yunyun, Liu, Tingting, Su, Ming, Jia, Zeyu, Zhao, Yu, Mu, Zhen, Yang, Min
Source:
The Science of the total environment 2019 v.671 pp. 149-156
ISSN:
0048-9697
Subject:
2-methylisoborneol, Cryptomonas, Ochromonas, aldehydes, algae, butyrates, comprehensive two-dimensional gas chromatography, drinking water, fluorenes, geosmin, octenol, odor compounds, odors, olfactometry, synergism, water quality, water utilities
Abstract:
Disgusting fishy odor problems have become a major concern in drinking water quality, and are commonly related to algal proliferation in source water. Unlike the typical musty/earthy odorants 2-methylisoborneol (MIB) and geosmin, identification of the corresponding fishy odorants is still a big challenge. In this study, two species of fishy-odor-producing algae, Ochromonas sp. and Cryptomonas ovate, were cultured to explore the odor production characteristics and typical odorants. When algae were ruptured in the stationary and decline phases, fishy odor intensities of 4 to 8 characterized by FPA were produced. However, some frequently reported aldehydes that could cause fishy odor, including n-hexanal, 2-octenal, heptanal, 2,4-heptanal and 2,4-decadienal, were not detected in either of the cultured algae. The possible fishy odor-causing compounds were further identified by combining gas chromatography-olfactometry (GC-O/MS) and comprehensive two-dimensional gas chromatography (GC × GC-TOFMS) using retention indices (RIs). From GC-O/MS analysis, twelve and six olfactometry peaks with various odor characteristics were identified in Ochromonas sp. and Cryptomonas ovate, respectively, of which three and two olfactometry peaks showed fishy odor characteristics. 2-Nonenal, 2,4-octadienal, fluorene and 2-tetradecanone were identified as fishy odorants in Ochromonas sp., and 1-octen-3-ol, 6-methyl-5-hepten-2-one, 1-octen-3-one, 2-nonenal and 2,4-octadienal were identified in Cryptomonas ovate. Other identified compounds, including butyl butanoate (fragrant odor), ionone (fragrant odor), bis (2-chloroisopropyl) ether (chemical odor) etc., did not show fishy features. Therefore, the fishy odor might be a synthetic and comprehensive odor, which resulted from the combination of different odorants and their synergistic effects. The results of this study will be helpful for understanding fishy odor problems, which will provide support for fishy odor management and control in the drinking water industry.
Agid:
6350767