PubAg

Main content area

Achieving mainstream nitrogen and phosphorus removal through Simultaneous partial Nitrification, Anammox, Denitrification, and Denitrifying Phosphorus Removal (SNADPR) process in a single-tank integrative reactor

Author:
Xu, Xiaochen, Qiu, Linyuan, Wang, Chao, Yang, Fenglin
Source:
Bioresource technology 2019 v.284 pp. 80-89
ISSN:
0960-8524
Subject:
Dechloromonas, Nitrosomonas, Pseudomonas, ammonium, anaerobic ammonium oxidation, biofilm, carbon nitrogen ratio, chemical oxygen demand, denitrification, energy efficiency, microbial communities, nitrates, nitrifying bacteria, nitrogen, nitrogen content, phosphates, phosphorus, sewage, sewage treatment
Abstract:
Simultaneous partial Nitrification, Anammox, and Denitrification (SNAD) is a promising and energy-efficient nitrogen removal process, which is powerless to eliminate phosphorus and confronted the problem of excessive effluent nitrate once applied in municipal sewage treatment characterized with high C/N ratio (≥2). Herein, by coupling SNAD with denitrifying phosphorus removal (DPR) process in a single-tank reactor, a novel integrative process (termed as SNADPR) was designed to treat municipal sewage. The removal efficiencies of TN, PO43−-P, and COD under the optimized conditions (T = 30 °C, HRT = 24 h, DO = 0.45 mg/L) were 89.15 ± 2.19%, 92.93 ± 0.60%, and 99.17 ± 1.58%, respectively. Distinctive microbial community distribution was harvested, where anammox bacteria (AnAOB, Candidatus_Kuenenia and Candidatus_Brocadia) were mainly located in biofilm, whereas denitrifying polyphosphate-accumulating organisms (DPAOs, Dechloromonas and Pseudomonas) and ammonium oxidizing bacteria (AOB, Nitrosomonas) basically lived in suspended floc. The SRT separation between biofilm and floc was reached by conserving AnAOB-rich biofilm and termly discharging phosphorus-rich floc.
Agid:
6352162