Main content area

Early Aerobic Exercise Combined with Hydrogen-Rich Saline as Preconditioning Protects Myocardial Injury Induced by Acute Myocardial Infarction in Rats

Feng, Rui, Cai, Mengxin, Wang, Xudan, Zhang, Juanjuan, Tian, Zhenjun
Applied biochemistry and biotechnology 2019 v.187 no.3 pp. 663-676
antioxidant activity, catalase, coronary vessels, exercise, heart, infarction, intragastric administration, laboratory animals, malondialdehyde, models, myocardial infarction, oxidative stress, pH, proteins, rats, superoxide dismutase
It has been reported that hydrogen-rich saline (HRS) water reduces oxidative stress, and early aerobic exercise (eAE) acts an efficient exercise preconditioning (EP) against cardiac I/R injury. However, whether early aerobic exercise combined with hydrogen-rich saline (eAE-HRS) water can more effectively protect myocardial damage induced by acute myocardial infarction (MI) is still unknown. This study was aimed to evaluate the effect of eAE-HRS in preventing MI-induced myocardial damage and explore the possible underlying mechanisms. After Sprague-Dawley (SD) rats were given a intragastric administration of HRS (1.6 ppm) at a dosage of 10 mL/kg weight daily for 3 weeks and/or the SD rats were performed a eAE program with 3 weeks running training, the left anterior descending coronary artery was ligated to induce MI. We assessed the effects of eAE-HRS on myocardial injury and oxidative damage in the MI model of rats and detected the effects of eAE-HRS on the expressions of cardiac OGG1 and Tom40, Tom20, and Tim23. The eAE-HRS increased significantly left ventricular systolic pressure, reduced left ventricular end-diastolic pressure, and potentiated + dp/dtₘₐₓ, −dp/dtₘₐₓ, heart coefficient and pH after MI injury. The eAE-HRS reduced MI-induced CK-MB level, c-Tnl level, h-FABP level, infarct size. The eAE-HRS enhanced MI-induced levels of the superoxide dismutase and total antioxidant capacity, attenuated MI-induced levels of malondialdehyde and catalase. The eAE-HRS increased expressions of OGG1, Tom20 and Tim23 proteins after MI injury, but not Tom40. The eAE-HRS has the potential to be a novel precautionary measure to protect myocardial injury after MI via partially regulating expressions of antioxidant-related proteins and mitochondrial-associated proteins.