U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.


Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


Main content area

Effects of three phenolic compounds on mitochondrial function and root vigor of cotton (Gossypium hirsutum L.) seedling roots

Guowei Zhang, Changqin Yang, Ruixian Liu, Wanchao Ni
Acta physiologiae plantarum 2019 v.41 no.5 pp. 60
4-hydroxybenzoic acid, Gossypium hirsutum, H-transporting ATP synthase, allelochemicals, catalase, continuous cropping, cotton, crop yield, enzyme activity, ferulic acid, hydrogen peroxide, hydroponics, membrane fluidity, mitochondria, permeability, peroxidase, root growth, root systems, roots, seedlings, soil, superoxide anion, superoxide dismutase, vigor
Continuous cropping of cotton causes accumulation of allelochemicals in soil that results in substantial crop yield and quality losses. To elucidate the physiological mechanism of the effects of allelochemicals on cotton root growth, and solve the problem of continuous cropping obstacles, hydroponics experiments were carried out to study the effects of three allelochemicals (p-hydroxybenzoic acid (PHBA), phloroglucinol, and ferulic acid) at different concentrations (0.8, 4.0, and 20.0 mmol L⁻¹) on the production of reactive oxygen species, antioxidant enzyme activities, and mitochondrial function of cotton seedling roots. All three phenolic compounds suppressed cotton root growth, decreased the activity of antioxidant enzymes (superoxide dismutase, catalase and peroxidase) and H⁺-ATPase in root mitochondria, and increased generation of O₂⁻ and the content of H₂O₂. They also increased the degree of openness of mitochondria permeability transition pores, and decreased the membrane fluidity of mitochondria, and the ratio of cytochrome (Cyt) c/a, thus resulting in the damage of mitochondrial structure and overall function of the root system. Ferulic acid at 20.0 mmol L⁻¹ inhibited cotton root growth more than the other treatments. Above all, all three kinds of allelochemicals inhibited antioxidant enzyme activity and mitochondrial function in cotton seedling roots, and the inhibition depended on the dose of phenolic compounds. Compared to PHBA and phloroglucinol, ferulic acid was a stronger inhibitor of cotton seedling root growth.