PubAg

Main content area

In-Solution Microscopic Imaging of Fractal Aggregates of a Stressed Therapeutic Antibody

Author:
Senga, Yukako, Imamura, Hiroshi, Ogura, Toshihiko, Honda, Shinya
Source:
Analytical chemistry 2019 v.91 no.7 pp. 4640-4648
ISSN:
1520-6882
Subject:
analytical methods, antibodies, biopharmaceuticals, drying, electron microscopy, fractal dimensions, image analysis, immunoglobulin G, light scattering, manufacturing, monitoring, neutralization, pharmaceutical industry, protein aggregates, staining, therapeutics
Abstract:
Aggregates of therapeutic proteins that can contaminate drug products during manufacture is a growing concern for the pharmaceutical industry because the aggregates are potentially immunogenic. Electron microscopy is a typical, indispensable method for imaging nanometer- to micrometer-sized structures. Nevertheless, it is not ideal because it must be performed with ex situ monitoring under high-vacuum conditions, where the samples could be altered by staining and drying. Here, we introduce a scanning electron-assisted dielectric microscopy (SE-ADM) technique for in-solution imaging of monoclonal immunoglobulin G (IgG) aggregates without staining and drying. Remarkably, SE-ADM allowed assessment of the size and morphology of the IgG aggregates in solution by completely excluding drying-induced artifacts. SE-ADM was also beneficial to study IgG aggregation caused by temporary acid exposure followed by neutralization, pH-shift stress. A box-counting analysis of the SE-ADM images provided fractal dimensions of the larger aggregates, which complemented the fractal dimensions of the smaller aggregates measured by light scattering. The scale-free or self-similarity nature of the fractal aggregates indicated that a common mechanism for antibody aggregation existed between the smaller and larger aggregates. Consequently, SE-ADM is a useful method for characterizing protein aggregates to bridge the gaps that occur among conventional analytical methods, such as those related to in situ/ex situ techniques or size/morphology assessments.
Agid:
6355716