PubAg

Main content area

Combination of complementary data mining methods for geographical characterization of extra virgin olive oils based on mineral composition

Author:
Sayago, Ana, González-Domínguez, Raúl, Beltrán, Rafael, Fernández-Recamales, Ángeles
Source:
Food chemistry 2018 v.261 pp. 42-50
ISSN:
0308-8146
Subject:
coasts, extra-virgin olive oil, mineral content, provenance, statistical models, support vector machines, traceability, Mediterranean region
Abstract:
This work explores the potential of multi-element fingerprinting in combination with advanced data mining strategies to assess the geographical origin of extra virgin olive oil samples. For this purpose, the concentrations of 55 elements were determined in 125 oil samples from multiple Spanish geographic areas. Several unsupervised and supervised multivariate statistical techniques were used to build classification models and investigate the relationship between mineral composition of olive oils and their provenance. Results showed that Spanish extra virgin olive oils exhibit characteristic element profiles, which can be differentiated on the basis of their origin in accordance with three geographical areas: Atlantic coast (Huelva province), Mediterranean coast and inland regions. Furthermore, statistical modelling yielded high sensitivity and specificity, principally when random forest and support vector machines were employed, thus demonstrating the utility of these techniques in food traceability and authenticity research.
Agid:
6356286