Main content area

Structural stability and thermoelectric property optimization of Ca₂Si

Xiong, Rui, Sa, Baisheng, Miao, Naihua, Li, Yan-Ling, Zhou, Jian, Pan, Yuanchun, Wen, Cuilian, Wu, Bo, Sun, Zhimei
RSC advances 2017 v.7 no.15 pp. 8936-8943
algorithms, enthalpy, equations, guidelines, metals
By using an ab initio evolutionary algorithm structure search, low enthalpy criterion as well as stability analysis, we have found that cubic Fm3̄m Ca₂Si can be achieved under a negative external pressure, and the cubic phase is dynamically and mechanically stable at ambient conditions and high pressure. From first-principle hybrid functional calculations, we have unraveled the direct bandgap nature and bandgap variation of cubic Fm3̄m Ca₂Si with respective to pressure. Moreover, by combining with Boltzmann transport theory and the phonon Boltzmann transport equation, we have predicted that the figure of merit ZT for the cubic Fm3̄m Ca₂Si reaches the maximum value of 0.52 by p-type doping. Our results provide an interesting insight and feasible guidelines for the potential applications of cubic Fm3̄m Ca₂Si and related alkaline-earth metals silicides as the thermoelectric materials for heat-electricity energy convertors.