Main content area

Floc-size effects of the pathogenic bacteria in a membrane bioreactor plant

Zhang, Shaoqing, He, Zhili, Meng, Fangang
Environment international 2019 v.127 pp. 645-652
Actinobacillus ureae, Borrelia recurrentis, Campylobacter gracilis, Helicobacter cinaedi, Mycobacterium szulgai, Rickettsia akari, Staphylococcus, Ureaplasma urealyticum, World Health Organization, activated sludge, environmental health, humans, membrane bioreactors, metagenomics, pathogens, risk, virulent strains, wastewater treatment
The size nature of sludge flocs could affect the occurrence and distribution of bacterial pathogens in wastewater treatment plants (WWTPs). In this study, the floc-size dependence of bacterial pathogens in the activated sludge of a WWTP was investigated using high-throughput metagenomic sequencing approaches. The results showed that a total of 423 pathogenic species belonging to 123 genera were identified in the three size-fractionated flocs. Also, we found that all the pathogens on the WHO's global priority pathogens list were detected in the size-fractionated flocs, with relative abundance of 0.4%, 0.3% and 0.3% for large-size, medium-size and small-size flocs, respectively, indicating the severe human and environmental health risks of activated sludge. Importantly, our results revealed that the pathogenic species showed a clear floc-size dependent distribution manner, leading to significant differences (P < 0.05) of pathogenic communities among the size-fractionated flocs. Additionally, by partitioning pathogens based on the occurrence and significant difference in abundances, we suggested the following distribution features: 1) large flocs-associated pathogens, such as Borrelia recurrentis, Actinobacillus ureae and Campylobacter gracilis; 2) medium flocs-associated pathogens, such as Mycobacterium szulgai and Ureaplasma urealyticum; and 3) small flocs-associated pathogens, such as Rickettsia akari, Staphylococcus anginosus and Helicobacter cinaedi. Overall, this study provides a comprehensive understanding of pathogens in activated sludge, which is expected to aid in assessment and management of pathogen risks.