PubAg

Main content area

Differences in functional traits between invasive and native Amaranthus species under simulated acid deposition with a gradient of pH levels

Author:
Wang, Congyan, Wu, Bingde, Jiang, Kun, Zhou, Jiawei
Source:
Acta oecologica 2018 v.89 pp. 32-37
ISSN:
1146-609X
Subject:
Amaranthus retroflexus, Amaranthus tricolor, acid deposition, coculture, ecological invasion, ecosystems, hormesis, indigenous species, invasive species, leaf area, leaf width, leaves, nutrients, pH, plant growth, plants (botany), solar radiation
Abstract:
Co-occurring invasive plant species (invaders hereafter) and natives receive similar or even the same environmental selection pressures. Thus, the differences in functional traits between natives and invaders have become widely recognized as a major driving force of the success of plant invasion. Meanwhile, increasing amounts of acid are deposited into ecosystems. Thus, it is important to elucidate the potential effects of acid deposition on the functional traits of invaders in order to better understand the potential mechanisms for the successful invasion. This study aims to address the differences in functional traits between native red amaranth (Amaranthus tricolor L.; amaranth hereafter) and invasive redroot pigweed (A. retroflexus L.; pigweed hereafter) under simulated acid deposition with a gradient of pH levels. Pigweed was significantly taller than amaranth under most treatments. The greater height of pigweed can lead to greater competitive ability for resource acquisition, particularly for sunlight. Leaf shape index of pigweed was also significantly greater than that of amaranth under all treatments. The greater leaf shape index of pigweed can enhance the efficiency of resource capture (especially sunlight capture) via adjustments to leaf shape and size. Thus, the greater height and leaf shape index of pigweed can significantly enhance its competitive ability, especially under acid deposition. Acid deposition of pH 5.6 significantly increased amaranth leaf width in the co-cultivation due to added nutrients. The pH 4.5 acid deposition treatment significantly increased the specific leaf area of amaranth in the monoculture compared with the pH 5.6 acid deposition treatment and the control. The main mechanism explaining this pattern may be due to acid deposition mediating a hormesis effect on plants, promoting plant growth. The values of the relative competition intensity between amaranth and pigweed for most functional traits were lower than zero under most treatments. Thus, competitive performance arose in most treatments when the two species were grown together. This may be due to the enhanced competitive intensity under interspecific coexistence. However, the values of the relative competition intensity of the leaf functional traits between amaranth and pigweed were all higher than zero under the pH 5.6 simulated acid deposition treatment. Thus, interspecific facilitation occurs when the two species are co-cultivated under the pH 5.6 simulated acid deposition treatment. This may be due the positive nutritional effects induced in the pH 5.6 simulated acid deposition treatment.
Agid:
6369151