Main content area

A trade-off between primary and secondary seed dispersal by wind

Zhu, Jinlei, Liu, Minghu, Xin, Zhiming, Liu, Zhimin, Schurr, Frank M.
Plant ecology 2019 v.220 no.4-5 pp. 541-552
Calligonum, Zygophyllum, air, seed dispersal, seeds, terminal velocity, vegetation, wind speed
The seeds of most plant species are dispersed by multiple mechanisms. Whether functional traits mediate positive correlations or negative correlations (trade-offs) between different dispersal mechanisms has important consequences for ecological and evolutionary dynamics. We investigate how traits affect wind-driven seed dispersal through the air and across the ground (primary and secondary wind dispersal, respectively). We hypothesized that primary and secondary wind dispersal were positively correlated because they should both decrease with the wing loading of seeds. We test this hypothesis with wind-tunnel experiments using different seed morphologies of Zygophyllum xanthoxylon (heterocarpous) and Calligonum species. We measured primary dispersal distance at varying wind speeds and release heights, and quantified secondary dispersal potential as the threshold wind speed for seed movement on four ground surfaces. Contrary to our expectation, we found a context-dependent trade-off between primary and secondary wind dispersal. The smoother the ground surface, the stronger this trade-off becomes. The trade-off results from a positive relationship between wing loading and the ratio of vertical to horizontal seed projection (v/h-ratio): an increasing v/h-ratio not only promotes secondary dispersal on smooth surfaces by increasing wind interception of seeds, but also decreases primary dispersal distance by increasing wing loading and terminal velocity of seeds. The trade-off contradicts the widespread assumption of a positive correlation between primary and secondary dispersal. A simple classification into poorly and well-dispersed seeds is thus not possible. The trade-off may affect dynamics of succession and the expansion of pioneer vegetation, while potentially slowing down evolutionary responses to selection on seed dispersal.