Main content area

Increasing ecological multifunctionality during early plant succession

Winter, Susanne, Zaplata, Markus Klemens, Rzanny, Michael, Schaaf, Wolfgang, Fischer, Anton, Ulrich, Werner
Plant ecology 2019 v.220 no.4-5 pp. 499-509
community development, ecological succession, habitats, models, new species, plant communities, prediction, species richness, temporal variation, vegetation, watersheds
Ecological multifunctionality quantifies the functional performance of various important plant traits and increases with growing structural habitat heterogeneity, number of plant functional traits, and species richness. However, the successional changes in multifunctionality have not been traced so far. We use quantitative plant samples of 1 m² plots from the first 6 years of initial vegetation dynamics in a German created catchment to infer the temporal changes in plant functional trait space and multifunctionality. Multifunctionality at the plot level was in all study years lower than expected from a random sample of the local pool of potential colonizers and was lowest at intermediate states of succession. In each year species containing a specific set of traits occurred with limited but focused functionality. The observed average low degree of multifunctionality contrasts with recent models predicting a tendency towards maximum multifunctionality during plant community development. However, variability in multifunctionality among plots increased during succession and the respective multifunctionality distribution among plots was increasingly right skewed indicating an excess of plots with relatively high multifunctionality. This relative excess of plots with high multifunctionality might act as an important trigger of community development paving the way for new species and functions to become established.