Main content area

Immobilization of radioactive corrosion products by cold sintering of pure hydroxyapatite

ul Hassan, Muhmood, Iqbal, Sajid, Yun, Jong-Il, Ryu, Ho Jin
Journal of hazardous materials 2019 v.374 pp. 228-237
adsorbents, cobalt, cold, compression strength, corrosion, decontamination, hydroxyapatite, leaching, nuclear power, power plants, radioactive waste, temperature
An efficient method for the consolidation of cobalt (Co(II)) adsorbed calcium hydroxyapatite was investigated to develop a simplified route for decontamination of the coolant system of nuclear power plants and direct immobilization of as-spent adsorbent. Calcium hydroxyapatite nano-powder synthesized by a wet precipitation method was used as an adsorbent and 94% Co(II) surrogate removal from simulated water was measured. The as-spent adsorbent was sintered at 200 °C, a temperature significantly lower than conventional sintering temperatures (900–1300 °C) for hydroxyapatite, under a uniaxial pressure of 500 MPa for 10 min. The relative density after the cold sintering was >97% and sintered samples displayed good compressive strength (175 MPa). The normalized leaching rate of the Co(II) was measured as per ASTM-C1285 standard and found to be 2.5 × 10−5 g/m2/day. ANSI/ANS-16.1 test procedure was used to analyze the leachability of the sintered matrices and the measured leaching index value was 6.5. Thus, the use of pure calcium hydroxyapatite nano-powder as adsorbent and its cold sintering offers a mean by which radioactive waste form can be processed in an environment friendly manner.