Main content area

Characterizing effects of monsoons and climate teleconnections on precipitation in China using wavelet coherence and global coherence

Chang, Xueyu, Wang, Binbin, Yan, Yan, Hao, Yonghong, Zhang, Ming
Climate dynamics 2019 v.52 no.9-10 pp. 5213-5228
El Nino, arid zones, atmospheric precipitation, monsoon season, prediction, semiarid zones, water management, wavelet, China
Weather and climate in a location are generally affected by global climatic phenomena. Monsoons and teleconnections are two climatic phenomena that have been assessed in specific regions for their correlations with regional precipitation. This study characterized the effects of monsoons and climate teleconnections on precipitation in eight climate zones across China. Correlations between monthly precipitation from 1951 to 2013 across the eight zones and each of two important monsoon indices [the Indian Summer Monsoon (ISM) and East Asian Summer Monsoon (EASM)] and two major teleconnection indices [El Niño–Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO)] were analyzed based on wavelet coherence and global coherence. The results demonstrated that on the annual timescale, monsoons have stronger effects than teleconnections on monthly precipitation in each of the eight climate zones. On the intra-annual (0.5–1 year) and inter-annual (2–10 year) scales, the ISM mainly affects precipitation in the East Arid Region, Northeastern China, Northern China, and Qinghai-Tibet Plateau; the EASM mainly affects Northern China, Central China, and Southern China; the ENSO mainly affects Western Arid/Semiarid region and Qinghai-Tibet Plateau; the PDO mainly affects the Western Arid/Semiarid region. On the decadal timescale, the ISM mainly affects the Western arid/Semiarid and Central China; the EASM mainly affects Western arid/Semiarid, Central China, and Qinghai–Tibet Plateau; the ENSO mainly affects Northeastern China and Central China; and the PDO mainly affects East arid and Southern China regions. These findings provide a practical reference for water resources management and/or for the prediction of precipitation in different regions of China.