Main content area

DNA-aided identification of Culex mosquitoes (Diptera: Culicidae) reveals unexpected diversity in underground cavities in Austria

Zittra, Carina, Moog, Otto, Christian, Erhard, Fuehrer, Hans-Peter
Parasitology research 2019 v.118 no.5 pp. 1385-1391
Anopheles, Culex pipiens, Culiseta, autogeny, biotypes, epidemiology, females, genes, habitats, hibernation, hybrids, insects, males, pathogens, species diversity, Austria
Subterranean cavities serve as resting places and hibernation shelters for mosquitoes. In Europe, members of the genus Culex are often the most abundant insects on cave walls. Culex pipiens L., the common house mosquito, exists in two physically very similar, yet genetically and ecologically distinct biotypes (or forms, ‘f.’), namely Cx. pipiens f. pipiens and Cx. pipiens f. molestus. Autogeny and stenogamy of the latter form have been interpreted as adaptations to underground habitats. The epigean occurrence of the two biotypes and their hybrids was recently examined in Eastern Austria, but the hypogean distribution of the Cx. pipiens complex and morphologically similar non-members such as Cx. torrentium is unknown. Considering the key role of Culex mosquitoes in the epidemiology of certain zoonotic pathogens, the general paucity of data on species composition and relative abundance in subterranean shelters appears unfortunate.For a first pertinent investigation in Austria, we collected mosquitoes in four eastern federal states. Based on analyses of the ACE2 gene and the CQ11 microsatellite locus, 150 female and three male mosquitoes of the genus Culex, two females of the genus Culiseta and a single female of the genus Anopheles were determined to species level or below. In our catches, Cx. pipiens f. pipiens exceeded the apparent abundance of the purportedly cave-adapted Cx. pipiens f. molestus many times over. Records of Cx. hortensis and Cx. territans, two species rarely collected in Austria, lead us to infer that underground habitats host a higher diversity of culicine mosquitoes than previously thought.