Main content area

Induced polarization tomography applied to the detection and the monitoring of leaks in embankments

Abdulsamad, F., Revil, A., Soueid Ahmed, A., Coperey, A., Karaoulis, M., Nicaise, S., Peyras, L.
Engineering geology 2019 v.254 pp. 89-101
basins, cation exchange capacity, clay fraction, electrical conductivity, groundwater flow, models, monitoring, porosity, preferential flow, surveys, tomography, water content
During an induced polarization survey, both electrical conductivity and chargeability can be imaged. Recent petrophysical models have been developed to provide a consistent picture of these two parameters in terms of water and clay contents of soils. We test the ability of this method at a test site in which a controlled artificial leakage can be generated in an embankment surrounding an experimental basin. 3D tomography of the conductivity and normalized chargeability are performed during such a controlled leakage. Conductivity and induced polarization measurements were also performed on a core sample from the site. The sample was also characterized in terms of porosity and cation exchange capacity. Combining the 3D survey and these laboratory measurements, a 3D tomogram of the relative variation in water content (before leakage and during leakage) was estimated. It clearly exhibits the ground water flow path through the embankment from the outlet of the tube used to generate the leak to the bottom of the embankment. In addition, a self-potential survey was performed over the zone of leakage. This survey evidences also the projection of the ground water flow path over the ground surface. Both methods are found to provide a consistent picture. A 2.5D time lapse tomography of the electrical conductivity and normalized chargeability was also performed and evidences the position of the preferential flow paths below the profile. These results confirm the ability and efficiency of induced polarization to provide reliable information pertaining to the detection of leakages in dams and embankments.