Main content area

The first complete mitochondrial genome of a cyclophorid land snail, with implications for architaenioglossan relationships (Mollusca, Caenogastropoda, Cyclophoroidea)

Xie, Guang-Long, Köhler, Frank, Ouyang, Shan, Wu, Xiao-Ping
International journal of biological macromolecules 2019 v.133 pp. 522-528
Gastropoda, freshwater, gene order, mitochondrial genes, mitochondrial genome, phylogeny, ribosomal RNA, snails, stop codon, transfer RNA
Herein, we described the complete mitochondrial genome (‘mitogenome’) of the Chinese land snail Cyclophorus martensianus, which is the first published mitogenome for the caenogastropod family Cyclophoridae. This mitogenome is 15,308 bp long consisting of 37 genes: 13 protein-coding genes (PCGs), 22 tRNA genes and two rRNA genes. The A + T content (69.6%) is distinctly higher than the GC content (30.4%). Most PCGs start with ATN as initiation codons, and all PCGs have the conventional stop codons TAA and TAG. Overall, the biochemical properties and gene order of the cyclophorid mitogenome are very similar to those of other documented caenogastropod mitogenomes. We corroborate the findings of earlier studies that mitochondrial gene order is rather conserved among caenogastropods.Caenogastropoda are the taxonomically, morpho-anatomically and ecologically most diverse group of living gastropods comprising lineages inhabiting marine, freshwater, and terrestrial environments. Traditionally, the three most speciose groups of non-marine caenogastropods have all been placed in a single group, the Architaenioglossa. This group contains two freshwater lineages, the Viviparoidea and Ampullaroidea, and the terrestrial Cyclophoroidea. However, architaenioglossan relationships have remained controversial with several morphology-based on molecular phylogenetic analyses supporting contradicting phylogenetic hypotheses. In order to more robustly resolve the relationships among the Architaenioglossa, we have performed phylogenetic analyses of caenogastropod mitogenomes including the new mitogenome of Cyclophorus martensianus. Our phylogenetic reconstructions are based on the amino acid sequences of all protein-coding genes and consistently recovered Architaenioglossa as non-monophyletic.