Main content area

miR-425-5p decreases LncRNA MALAT1 and TUG1 expressions and suppresses tumorigenesis in osteosarcoma via Wnt/β-catenin signaling pathway

Yang, Guohui, Zhang, Chi, Wang, Nan, Chen, Juwu
The international journal of biochemistry & cell biology 2019 v.111 pp. 42-51
blood serum, carcinogenesis, cell proliferation, microRNA, osteosarcoma, patients, signal transduction
Multiple miRNAs have been recognized as critical regulators in osteosarcoma (OS) carcinogenesis. miR-425-5p was demonstrated to be downregulated in the serum of OS patients. However, the detailed roles of miR-425-5p in OS progression and its underlying molecular mechanism are far from being addressed. In our study, the reduced expression of miR-425-5p was observed in OS tissues and cells. Functional analyses showed that miR-425-5p overexpression suppressed OS cell proliferation, invasion and migration in vitro. Moreover, miR-425-5p upregulation decreased the expressions of MALAT1 and TUG1 in OS cells via directly binding them. miR-425-5p upregulation strikingly abrogated the activation of Wnt/β-catenin signaling pathway induced by MALAT1 and TUG1 overexpression in OS cells. Finally, we validated that miR-425-5p hindered OS tumor growth, and suppressed MALAT1 and TUG1 expressions and the Wnt/β-catenin signaling pathway in vivo. Our findings concluded that miR-425-5p suppressed the tumorigenesis of OS via decreasing MALAT1 and TUG1 expressions through inactivation of the Wnt/β-catenin signaling pathway, contributing to a better understanding of the molecular mechanism of the tumorigenesis of OS.