Main content area

Stink bug rostrum length vs. stylet penetration potential

Esquivel, Jesus F.
Entomologia experimentalis et applicata 2019 v.167 no.4 pp. 323-329
Acrosternum hilare, Euschistus servus, Gossypium hirsutum, Oebalus pugnax, Piezodorus guildinii, bolls, cotton, disease transmission, mechanics, models, plague, stylets
Stink bugs (Hemiptera: Pentatomidae) and related species continue to plague cotton, Gossypium hirsutum L. (Malvaceae), worldwide. Stink bugs utilize their stylets (housed within the rostrum) to feed upon cotton bolls and transmit pathogens that cause seed and boll rot of cotton. Stylet penetration potential of stink bugs is influenced by species and recent observations indicated a phenomenon whereby stink bugs with shorter rostra yielded deeper stylet penetration estimates. The objective of this study was to elucidate the relationship between rostrum length and known stylet penetration estimates for two pairs of similar‐sized pentatomid species: Chinavia hilaris (Say) vs. Euschistus servus (Say), and Oebalus pugnax (Fabricius) vs. Piezodorus guildinii Westwood. For each species, individual rostral segments were measured to yield total lengths, and measurements were compared against known stylet penetration estimates. Chinavia hilaris and P. guildinii have longer rostra than E. servus and O. pugnax, respectively, yet E. servus and O. pugnax yielded deeper stylet penetration estimates. Deeper stylet penetration by species with shorter rostra can be attributed to differences in the lengths of rostral segments 1 and 2. Euschistus servus and O. pugnax each had significantly longer rostral segments 1 and 2 than C. hilaris and P. guildinii, respectively. Also, the cumulative lengths of rostral segments 1 and 2 comprised a higher overall proportion of the entire rostrum length in E. servus and O. pugnax vs. C. hilaris and P. guildinii, respectively. Rostral segments 1 and 2 are instrumental in the feeding mechanics of these phytophagous species; it is clear that their greater length and their role in stylet penetration model calculations – including the lengths of segments 3 and 4 – override the presumption that total rostrum length equates to stylet penetration potential. This novel finding contributes to the general knowledge of stink bug feeding mechanics.