Main content area

Finding the most important sensory descriptors to differentiate some Vitis vinifera L. South American wines using support vector machines

Costa, Nattane Luíza, Llobodanin, Laura Andrea García, Castro, Inar Alves, Barbosa, Rommel
European food research & technology 2019 v.245 no.6 pp. 1207-1228
Vitis vinifera, provenance, selection methods, sensory properties, support vector machines, wine cultivars, wines, Argentina, Brazil, Chile, Uruguay
The geographical recognition of wines has been extensively attempted based on chemical parameters. However, few studies have used wine sensory properties to characterize wines according to their geographical origin. This paper presents a machine learning study to classify and to find the most important sensory descriptors of Cabernet Sauvignon, Syrah, Tannat, and Merlot wines from Argentina, Brazil, Chile and Uruguay. Four feature selection methods (F score, relief, [Formula: see text], and random forest importance) were used to generate the order of importance of the sensory descriptors. The feature subsets were generated based on the feature selection ranking order to use as input features for the support vector machines classifier. Very good results with 85–100% accuracy were achieved, and the results showed that few sensory descriptors discriminate the origin of wines better than when using all the descriptors and that there is a specific subset of most important features to each wine variety. As far as we know, this is the first study to analyze South American wines based solely on sensory descriptors and support vector machines along with feature selection methods.