Main content area

BMSCs-laden gelatin/sodium alginate/carboxymethyl chitosan hydrogel for 3D bioprinting

Huang, Jie, Fu, Han, Wang, Zhiying, Meng, Qingyuan, Liu, Sumei, Wang, Heran, Zheng, Xiongfei, Dai, Jianwu, Zhang, Zhijun
RSC advances 2016 v.6 no.110 pp. 108423-108430
antibacterial properties, bioprinting, cell viability, chitosan, gelatin, hydrogels, mechanical properties, medicine, mesenchymal stromal cells, mixing, sodium alginate, stem cells, tissue engineering, water content
Three-dimensional (3D) bioprinting technology offers the possibility to deliver, in a defined and organized manner, scaffolding materials and living cells, and therefore holds much promise for tissue engineering and regenerative medicine. In this work, we explored the possibility of gelatin/sodium alginate/carboxymethyl chitosan (Gel/SA/CMCS) hydrogel combining with bone mesenchymal stem cells (BMSCs) for 3D bioprinting. Compared to the commonly used 3D bioprinting materials such as gelatin/sodium alginate (Gel/SA) hydrogel, the Gel/SA/CMCS hydrogel we developed shows excellent equilibrium water content, good mechanical properties, antibacterial activity, and a slow degradation rate. With this kind of material, we generated a scaffold with homogenous cell distribution. Cell viability after 3D printing showed that over 85% of the printed cells were viable at 0 and 2 days of culturing. Our work demonstrates the feasibility of mixing Gel/SA/CMCS hydrogel with stem cells for 3D bioprinting.