Main content area

Bio-directed morphology engineering towards hierarchical 1D to 3D macro/meso/nanoscopic morph-tunable carbon nitride assemblies for enhanced artificial photosynthesis

Xu, Jun, Zhou, Han, Shi, Kaiyu, Yan, Runyu, Tang, Yiwen, Liu, Jian, Ye, Jinhua, Zhang, Di, Fan, Tongxiang
Journal of materials chemistry A 2017 v.5 no.5 pp. 2195-2203
Escherichia coli, Papilio, carbon dioxide, carbon monoxide, carbon nitride, liquids, methane, photosynthesis, pollen, porosity, wings
The design of artificial photosynthetic systems (APSs) with hierarchical porosity by taking into account liquid flow and gas transport effects is of high significance. Herein we demonstrate a general and facile strategy to prepare hierarchical 1D to 3D macro/meso/nanoscopic morph-tunable g-C₃N₄ assemblies via bio-directed morphology engineering for enhanced artificial photosynthesis of CO and methane via CO₂ reduction. Escherichia coli (1D), Papilio nephelus wings (2D, planar) and cole pollen (3D) are adopted for 1D to 3D multiscale assemblies with high surface areas via a two-step transformation process. Moreover, liquid flow and gas diffusion behaviors are investigated using COMSOL computational simulation to reveal the relationship between structural effects and output efficiency theoretically. Such methodology can be extended to realize versatile fabrication of various morph-tunable carbon nitride assemblies. Importantly, this research illustrates the power of combining theoretical calculations and experimental techniques to achieve the controlled design of high efficiency APS and may provide further avenues to APS optimization.