PubAg

Main content area

Protein–polysaccharide complexes for enhanced protein delivery in hyaluronic acid templated calcium carbonate microparticles

Author:
Ramalapa, Bathabile, Crasson, Oscar, Vandevenne, Marylène, Gibaud, Alain, Garcion, Emmanuel, Cordonnier, Thomas, Galleni, Moreno, Boury, Frank
Source:
Journal of materials chemistry B 2017 v.5 no.35 pp. 7360-7368
ISSN:
2050-7518
Subject:
beta-lactamase, calcium carbonate, carbon dioxide, chitin, encapsulation, humans, hyaluronic acid, microparticles, recombinant fusion proteins, thrombin, vaterite
Abstract:
The controlled delivery of proteins within calcium carbonate (CaCO₃) particles is currently widely investigated. The success of these carriers is driven by ionic interactions between the encapsulated proteins and the particles. This poses a great limitation on the successful loading of proteins that have no ionic affinity to CaCO₃. In this study, we explored the use of polysaccharide–protein interactions to strongly enhance the encapsulation of proteins in CaCO₃ microparticles. Previously, Vandevenne and colleagues inserted a human chitin binding domain (ChBD) that has intrinsic affinity for hyaluronic acid (HA) into a β-lactamase (BlaP). This generated chimeric protein, named BlaPChBD, was shown to be fully bifunctional. In this study we showed that this hybrid protein can associate with HA and be successfully loaded into vaterite CaCO₃ microparticles using supercritical CO₂ (ScCO₂) technology aided by the templating effect of HA on CaCO₃. The presence of ChBD inserted into BlaP increased the encapsulation of the protein by 6-fold when complexed with HA. Furthermore, thrombin cleavage sites were engineered on both sides of the inserted ChBD in the chimeric BlaP to achieve release of the protein from the microparticles by protease cleavage. Our results showed that thrombin cleavage increased the release of the protein from the microparticles within 36 hours from <20% to 87%. In conclusion, the presence of ChBD successfully improved the encapsulation yield of the protein while retaining up to 82% of its activity and efficient release of the protein from the microparticles was achieved by protease cleavage.
Agid:
6427744