Main content area

Manduca sexta Perilipin 1B: A new PLIN1 isoform linked to fat storage prior to pupation

Chen, Xiao, Firdaus, Sarah J., Fu, Zhiyan, Wu, Zengying, Soulages, Jose L., Arrese, Estela L.
Insect biochemistry and molecular biology 2019 v.110 pp. 69-79
Manduca sexta, complementary DNA, diet, droplets, exons, fat body, insect larvae, insects, instars, lipid content, mass spectrometry, messenger RNA, metabolism, open reading frames, proteins, pupation, refeeding, starvation, triacylglycerols
Perilipins (PLINs) are proteins that associate with lipid droplets (LDs) and play roles in the control of triglycerides (TG) metabolism. Two types of PLINs - 1 and 2- occur in insects. Following previous work on MsPLIN1A (a 42 kDa protein formerly called MsLsd1), here we report a new PLIN1 isoform, MsPLIN1B. MsPLIN1B cDNA was cloned and the 1835bp cDNA contains an ORF encoding a 47.9 kDa protein whose expression was confirmed by mass spectrometry. Alternative transcripts A and B, which differ in the alternative use of exon 1, were the most abundant PLIN1 transcripts in the fat body. These transcripts encode nearly identical proteins except that the B isoform contains 59 additional residues in its amino terminus. No conserved domain was identified in the extra region of MsPLIN1B. The novel PLIN1 isoform is found in lepidopteran species. In Manduca, PLIN1B was expressed only in the 5th instar larva and its levels correlated with fat storage. Furthermore, PLIN1B levels increased with the fat content of the diet in insects of the same age confirming a direct relationship between PLIN1B and TG storage irrespective of development. The nutritional status impacted PLIN1B levels, which decreased in starvation and increased with subsequent re-feeding. Altogether data support a link between PLIN1B and TG storage in caterpillars prior to pupation. The combined findings suggest distinct roles for PLIN1A, PLIN1B and PLIN2. MsPLIN1A abundance correlates with mobilization of TG stores, MsPLIN2 with the synthesis of new LDs and MsPLIN1B abundance correlates with high levels of TG storage and large LD sizes at the end of the last feeding period.