Main content area

Impacts of extratropical storm tracks on Arctic sea ice export through Fram Strait

Wei, Jianfen, Zhang, Xiangdong, Wang, Zhaomin
Climate dynamics 2019 v.52 no.3-4 pp. 2235-2246
atmospheric circulation, climate, data collection, ice, models, storms, summer, wind direction, wind stress, winter, Arctic region
Studies have indicated regime shifts in atmospheric circulation, and associated changes in extratropical storm tracks and Arctic storm activity, in particular on the North Atlantic side of the Arctic Ocean. To improve understanding of changes in Arctic sea ice mass balance, we examined the impacts of the changed storm tracks and cyclone activity on Arctic sea ice export through Fram Strait by using a high resolution global ocean–sea ice model, MITgcm–ECCO2. The model was forced by the Japanese 25-year Reanalysis (JRA-25) dataset. The results show that storm-induced strong northerly wind stress can cause simultaneous response of daily sea ice export and, in turn, exert cumulative effects on interannual variability and long-term changes of sea ice export. Further analysis indicates that storm impact on sea ice export is spatially dependent. The storms occurring southeast of Fram Strait exhibit the largest impacts. The weakened intensity of winter (in this study winter is defined as October–March and summer as April–September) storms in this region after 1994/95 could be responsible for the decrease of total winter sea ice export during the same time period.