PubAg

Main content area

On task: Considerations and future directions for studies of corticospinal excitability in exercise neuroscience and related disciplines

Author:
Kalmar, Jayne M.
Source:
Applied physiology, nutrition and metabolism 2018 v.43 no.11 pp. 1113-1121
ISSN:
1715-5320
Subject:
exercise, laboratory techniques, motor cortex, muscles, neurophysiology, transcranial magnetic stimulation
Abstract:
Over the last few decades, transcranial magnetic stimulation (TMS) has emerged as a conventional laboratory technique in human neurophysiological research. Exercise neuroscientists have used TMS to study central nervous system contributions to fatigue, training, and performance in health, injury, and disease. In such studies, corticospinal excitability is often assessed at rest or during simple isometric tasks with the implication that the results may be extrapolated to more functional and complex movement outside of the laboratory. However, the neural mechanisms that influence corticospinal excitability are both state- and task-dependent. Furthermore, there are many sites of modulation along the pathway from the motor cortex to the muscle; a fact that is somewhat obscured by the all-encompassing and poorly defined term “corticospinal excitability”. Therefore, the tasks we use to assess corticospinal excitability and the conclusions that we draw from such a global measure of the motor pathway must be taken into consideration. The overall objective of this review is to highlight the task-dependent nature of corticospinal excitability and the tools used to assess modulation at cortical and spinal sites of modulation. By weighing the advantages and constraints of conventional approaches to studying corticospinal excitability, and considering some new and novel approaches, we will continue to advance our understanding of the neural control of movement during exercise.
Agid:
6439212