PubAg

Main content area

Evaluation of the selective antibacterial activity of Eucalyptus globulus and Pimenta pseudocaryophyllus essential oils individually and in combination on Enterococcus faecalis and Lactobacillus rhamnosus

Author:
Ambrosio, Carmen M.S., de Alencar, Severino M., Moreno, Andrea M., Da Gloria, Eduardo M.
Source:
Canadian journal of microbiology 2018 v.64 no.11 pp. 844-855
ISSN:
1480-3275
Subject:
Enterococcus faecalis, Eucalyptus globulus, Lactobacillus rhamnosus, Pimenta pseudocaryophyllus, additive effect, animals, antibacterial properties, antibiotics, bacteria, beneficial microorganisms, diet, digestive system, essential oils, minimum inhibitory concentration, models, oils, viability
Abstract:
Essential oils (EOs), as substitutes for antibiotics in animal diets, should have selective antibacterial activity between pathogenic and beneficial bacteria from the animal gut. Thus, this study evaluated the selective antibacterial activity of Eucalyptus globulus (EG) and Pimenta pseudocaryophyllus (PP) EOs on Enterococcus faecalis as a surrogate model of pathogenic bacterium and on Lactobacillus rhamnosus as a beneficial bacterium model. The EOs antibacterial activity was evaluated by determination of minimal inhibitory concentrations (MICs), minimal bactericidal concentration (MBCs), and fractional inhibitory concentration (FIC) indices. The time-kill and sequential exposure assays were also performed, but using only the EG oil, which was the best selective EO, since it had a MIC lower on E. faecalis (7.4 mg/mL) than on L. rhamnosus (14.8 mg/mL). FIC index values showed that the combination of the two EOs had an indifferent effect (1.25 and 2.03) on E. faecalis and an additive effect (1.00) on L. rhamnosus. The time-kill assay showed that EG oil was able to kill E. faecalis within 15 min of treatment (∼5 log reduction) and caused a reduction ∼3 log of L. rhamnosus viability. The sequential exposure assay showed that EG oil (at MIC/2) produced higher reduction on E. faecalis viability (∼3 log) than on L. rhamnosus (∼2 log) as well. Therefore, L. rhamnosus presented higher tolerance to the antibacterial activity of EG oil than E. faecalis did.
Agid:
6440060