PubAg

Main content area

Life cycle assessment of a wooden single-family house in Sweden

Author:
Petrovic, Bojana, Myhren, Jonn Are, Zhang, Xingxing, Wallhagen, Marita, Eriksson, Ola
Source:
Applied energy 2019 v.251 pp. 113253
ISSN:
0306-2619
Subject:
attributional life cycle assessment, buildings, carbon dioxide, case studies, construction materials, electricity, environmental impact, global warming potential, greenhouse gas emissions, greenhouse gases, longevity, primary energy, Sweden
Abstract:
To understand the reasons behind the large environmental impact from buildings the whole life cycle needs to be considered. Therefore, this study evaluates the carbon dioxide emissions in all stages of a single-family house in Sweden from the production of building materials, followed by construction and user stages until the end-of-life of the building in a life cycle assessment (LCA). The methodology applied is attributional life cycle assessment (LCA) based on ‘One Click LCA’ tool and a calculated life span of 100 years. Global warming potential (GWP) and primary energy (PE) are calculated by using specific data from the case study, furthermore the data regarding building materials are based on Environmental Product Declarations (EPDs). The results show that the selection of wood-based materials has a significantly lower impact on the carbon dioxide emissions in comparison with non-wood based materials. The total emissions for this single-family house in Sweden are 6 kg CO2e/m2/year. The production stage of building materials, including building systems and installations represent 30% of the total carbon dioxide equivalent emissions, while the maintenance and replacement part represents 37%. However, energy use during the in-use stage of the house recorded lower environmental impact (21%) due to the Swedish electricity mix that is mostly based on energy sources with low carbon dioxide emissions. The water consumption, construction and the end-of-life stages have shown minor contribution to the buildings total greenhouse gas (GHG) emissions (12%). The primary energy indicator shows the largest share in the operational phase of the house.
Agid:
6442180