Main content area

Penicillium digitatum infection mechanisms in citrus: What do we know so far?

Costa, Jonas Henrique, Bazioli, Jaqueline Moraes, de Moraes Pontes, João Guilherme, Fill, Taícia Pacheco
Fungal biology 2019 v.123 no.8 pp. 584-593
Agrobacterium radiobacter, Citrus, Penicillium digitatum, chemical interactions, citriculture, citrus fruits, fruits, fungi, gene targeting, genes, host range, host-pathogen relationships, hydrogen peroxide, metabolites, organic acids and salts, pH, postharvest diseases, reverse transcriptase polymerase chain reaction, secretion, virulence
Penicillium digitatum is the major source of postharvest decay in citrus fruits worldwide. This fungus shows a limited host range, being able to infect mainly mature fruit belonging to the Rutaceae family. This highly specific host interaction has attracted the interest of the scientific community. Researchers have investigated the chemical interactions and specialized virulence strategies that facilitate this fungus's fruit colonization, thereby leading to a successful citrus infection. There are several factors that mediate and affect the interaction between P. digitatum and its host citrus, including hydrogen peroxide modulation, secretion of organic acids and consequently pH control, and other strategies described here. The recently achieved sequencing of the complete P. digitatum genome opened up new possibilities for exploration of the virulence factors related to the host-pathogen interaction. Through such techniques as RNAseq, RT-PCR and targeted gene knockout mediated by Agrobacterium tumefaciens, important genes involved in the fungal infection process in citrus have been reported, helping to elucidate the molecular mechanisms, metabolites and genetic components that are involved in the pathogenicity of P. digitatum. Understanding the infection process and fungal strategies represents an important step in developing ways to protect citrus from P. digitatum infection, possibly leading to more productive citriculture.