Main content area

Impact of Design Changes in Gastrostomy Tube (G-tube) Devices for Patients Who Rely on Home-Based Blenderized Diets for Enteral Nutrition

Guha, Suvajyoti, Bouhrira, Nesrine, Antonino, Mark J., Silverstein, Joshua S., Cooper, Jeffrey, Myers, Matthew R.
Journal of the American College of Nutrition 2019 v.38 no.4 pp. 311-317
advocacy, blenders, diet, enteral feeding, gravity, mixing, patients, recipes
Objective: Blenderized diets are gaining increasing popularity among enteral tube users. Connectors in gastrostomy tubes (G-tubes) are undergoing standardization to reduce misconnections. These standardized G-tubes are referred to as ENFit G-tubes. This study was performed to quantify the in vitro performance of existing (legacy) G-tubes and compare them with ENFit G-tubes for blenderized diets. Method: Patient blenderized diet recipes and practices were obtained through patient advocacy groups. Different blenders and blending times were studied. Five legacy G-tube brands and three corresponding ENFit brands, sized between 14 Fr and 24 Fr, were studied under gravity and push modes of feeding. Results: Considering both thin and thick blenderized gravity mode diets, an average increase in feeding time from 20 minutes to 32 ± 18 minutes in transitioning from legacy to ENFit was observed with standard G-tubes, compared to 22 ± 3.5 minutes for low profiles. For push-mode diets, a 60-second push with standard ENFit G-tubes was easier compared to standard legacy G-tubes (61% ± 21% as much force), but faster 5-second pushes required considerably more effort for ENFit standard G-tubes (167% ± 96%). Low-profile ENFit G-tubes required slightly less effort compared to low-profile legacies for both 60-second and 5-second pushes (72% ± 22% and 90% ± 19%, respectively). Clogging was common in both legacy and ENFit devices, particularly under gravity mode. Conclusions: For a push mode of feeding, patients will largely be unimpacted after the transition to ENFit. For a gravity mode of feeding, some ENFit users may need higher-powered blenders and should expect increased feeding times.