PubAg

Main content area

Ras-ERK1/2 signaling accelerates the progression of colorectal cancer via mediation of H2BK5ac

Author:
Jia, Huanxiang, Xu, Ming, Bo, Yan, Li, Wenxiao, Zhou, Runhe
Source:
Life sciences 2019 v.230 pp. 89-96
ISSN:
0024-3205
Subject:
cell viability, colorectal neoplasms, epigenetics, genes, messenger RNA, phenotype, protein kinases, quantitative polymerase chain reaction, reverse transcriptase polymerase chain reaction, transcription (genetics)
Abstract:
Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) is a key downstream gene of Ras pathway. Activation of Ras-ERK1/2 has been testified to be linked to the progression of diverse cancers. Nonetheless, whether Ras-ERK1/2-tumorigenic pathway is mediated by epigenetic factors remains indistinct. The purpose of the research attempted to disclose the functions of H2BK5ac in Ras-ERK1/2-evoked CRC cell phenotypes.Western blot assay was implemented for exploration of the relevancy between Ras-ERK1/2 and H2BK5ac. H2BK5Q was established and its functions in cell viability, colony formation and migration were appraised via utilizing MTT, soft-agar colony formation and Transwell assays. The mRNA and transcription of ERK1/2 downstream genes were estimated via RT-qPCR and ChIP assays. HDAC2 functions in SW48 cell phenotypes were evaluated after co-transfection with pEGFP-RasQ61L/T35S and si-HDAC2 vectors. Additionally, the involvements of ATF2 and MDM2 in Ras-ERK1/2-affected H2BK5ac expression were estimated.H2BK5ac expression was evidently repressed by Ras-ERK1/2 pathway in SW48 cells. Moreover, Ras-ERK1/2-elevated cell viability, the number of colonies and migration were both impeded by H2BK5ac. The mRNA and transcriptions of CYR61, IGFBP3, WNT16B, NT5E, GDF15 and CARD16 were both mediated by H2BK5ac. Additionally, HDAC2 silence overtly recovered H2BK5ac expression inhibited by Ras-ERK1/2, meanwhile abated Ras-ERK1/2-affected SW48 cell phenotypes. Beyond that, restrained H2BK5ac induced by Ras-ERK1/2 was concerned with MDM2-mediated ATF2 degradation.These investigations testified that Ras-ERK1/2 pathway affected SW48 cell phenotypes through repressing H2BK5ac expression. Otherwise, declined H2BK5ac might be linked to MDM2-mediated ATF2 degradation.
Agid:
6454159