Main content area

Regio- and Diastereoselective Iron-Catalyzed [4+4]-Cycloaddition of 1,3-Dienes

Kennedy, C. Rose, Zhong, Hongyu, Macaulay, Rachel L., Chirik, Paul J.
Journal of the American Chemical Society 2019 v.141 no.21 pp. 8557-8573
X-ray diffraction, catalysts, chemical bonding, diastereoselectivity, iron, isotopes, ligands, magnetism, moieties, pyridines, regioselectivity, spectroscopy, topography
A family of single-component iron precatalysts for the [4+4]-cyclodimerization and intermolecular cross-[4+4]-cycloaddition of monosubstituted 1,3-dienes is described. Cyclooctadiene products were obtained with high regioselectivity, and catalyst-controlled access to either cis- or trans-diastereomers was achieved using 4-substituted diene substrates. Reactions conducted either with single-component precatalysts or with iron dihalide complexes activated in situ proved compatible with common organic functional groups and were applied on multigram scale (up to >100 g). Catalytically relevant, S = 1 iron complexes bearing 2-(imino)pyridine ligands, (ᴿPI)FeL₂ (ᴿPI = [2-(2,6-R₂-C₆H₃-N═CMe)-C₅H₄N] where R = ⁱPr or Me, L₂ = bis-olefin), were characterized by single-crystal X-ray diffraction, Mößbauer spectroscopy, magnetic measurements, and DFT calculations. The structural and spectroscopic parameters are consistent with an electronic structure description comprised of a high spin iron(I) center (SFₑ = 3/2) engaged in antiferromagnetically coupling with a ligand radical anion (SPI = −1/2). Mechanistic studies conducted with these single-component precatalysts, including kinetic analyses, ¹²C/¹³C isotope effect measurements, and in situ Mößbauer spectroscopy, support a mechanism involving oxidative cyclization of two dienes that determines regio- and diastereoselectivity. Topographic steric maps derived from crystallographic data provided insights into the basis for the catalyst control through stereoselective oxidative cyclization and subsequent, stereospecific allyl-isomerization and C–C bond-forming reductive elimination.